[ | E-mail | Share ]
Contact: Lauren Woods
Law2014@med.cornell.edu
646-317-7401
New York- Presbyterian Hospital/Weill Cornell Medical Center/Weill Cornell Medical College
Researchers 1 step closer to discovering combination drug therapy for lymphoma and avoiding toxicity of chemotherapy
NEW YORK (Dec. 10, 2012) -- Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin's lymphoma and the seventh most frequently diagnosed cancer. The most chemotherapy resistant form of DLBCL, called activated B-cell DLBCL (ABC-DLBCL), remains a major therapeutic challenge. An international research team, led by two laboratories from Weill Cornell Medical College, has developed a new experimental drug therapy to target this aggressive form of lymphoma.
In the journal Cancer Cell, researchers report the discovery of an experimental small molecule agent, MI-2, that irreversibly inactivates MALT1 -- a key protein responsible for driving the growth and survival of ABC-DLBCL cells.
"In our study we show the drug MI-2 we developed inactivates any MALT1 protein it touches, and without any apparent toxicity in animal models," says the study's lead investigator, Dr. Ari Melnick, associate professor of medicine and director of the Raymond and Beverly Sackler Center for Biomedical and Physical Sciences at Weill Cornell Medical College.
The research team, which includes investigators from Spain, Canada and several other U.S. institutions, are now working to optimize the drug while testing MI-2 with other drug therapies that could be less toxic than current chemotherapy regimens.
"No single drug can cure lymphoma. This is why we need to combine agents that can strike-out the different cellular pathways that lymphoma cells use to survive," says Dr. Melnick, who is also a hematologist-oncologist at NewYork-Presbyterian Hospital/Weill Cornell Medical Center. "We want to eliminate the use of toxic chemotherapy in the treatment of lymphoma patients, and these new study findings take us one-step closer to our goal of creating effective combinational molecular targeted therapy regimens to reduce treatment toxicity and improve lymphoma patient outcomes."
"A Bona Fide Therapeutic Target"
MALT1 is highly active in ABC-DLBCL and plays an important role in lymphoma cancer cell growth and survival. The unique protein is the only paracaspase produced in humans --and is a particular type of protease protein that cuts apart other proteins. But when MALT1 slices proteins in ABC-DLBCLs, it activates growth-promoting molecules and stops the work of other proteins that inhibit that growth.
"In essence, MALT1 turns off the brakes and presses the gas pedal to accelerate cell growth and survival in this aggressive cancer," Dr. Melnick says.
In this study, the researchers developed an activated form of MALT1 in the test tube that allowed them to study the structure of the molecule, and search for small molecule agents to shut it down. The key insights enabling this technical feat were achieved by co-lead investigator Dr. Hao Wu, an expert in biochemistry and structural biology and a former faculty member at Weill Cornell who is now at Harvard Medical School.
The researchers screened libraries of chemicals until they found one that tightly bonded to MALT1, preventing it from cutting other proteins. The agent, MI-2, also inactivated MALT1 in human samples of ABC-DLBCL, according to researchers.
When they tested the agent in mice, the research team found it stopped cancer growth without toxicity in normal tissues -- a trait Dr. Melnick says is due to the fact that MALT1 is not required for biological processes essential for life.
If tested successfully in human clinical trials, MI-2 could have benefits for other diseases, including MALT1 lymphoma, a lower-grade type of lymphoma. It could also possibly play a role in a variety of inflammatory and autoimmune disorders.
"MALT1 is a bona fide therapeutic target, and with the discovery of MI-2 we have provided a lead compound that forms the basis of a new class of therapeutic agents," says Dr. Melnick.
The Cornell Center for Technology Enterprise and Commercialization, on behalf of Cornell University, has filed a patent application on this research work.
###
This study was funded by the Leukemia & Lymphoma Society, Burroughs Wellcome Foundation, the Chemotherapy Foundation and the Beverly and Raymond Sackler Center for Physical and Biomedical Sciences at Weill Cornell Medical College.
Other study co-authors include Dr. Lorena Fontan, Dr. Chenghua Yang, Dr. Venkataraman Kabaleeswaran, Monica Garcia, Dr. Leandro Cerchietti, Dr. Rita Shaknovich, Shao Ning Yan and Dr. Fang Fang from Weill Cornell Medical College; Dr. Elena Beltran and Dr. Jose Angel Martinez-Climent from the University of Navarra, Spain; Dr. Katherine Borden, Dr. Laurent Volpon and Dr. Michael J. Osborne from the University of Montreal, Canada; Dr. Randy D. Gascoyne from the British Columbia Cancer Agency, Canada; and Dr. J. Fraser Glickman from The Rockefeller University.
Weill Cornell Medical College
Weill Cornell Medical College, Cornell University's medical school located in New York City, is committed to excellence in research, teaching, patient care and the advancement of the art and science of medicine, locally, nationally and globally. Physicians and scientists of Weill Cornell Medical College are engaged in cutting-edge research from bench to bedside, aimed at unlocking mysteries of the human body in health and sickness and toward developing new treatments and prevention strategies. In its commitment to global health and education, Weill Cornell has a strong presence in places such as Qatar, Tanzania, Haiti, Brazil, Austria and Turkey. Through the historic Weill Cornell Medical College in Qatar, the Medical College is the first in the U.S. to offer its M.D. degree overseas. Weill Cornell is the birthplace of many medical advances -- including the development of the Pap test for cervical cancer, the synthesis of penicillin, the first successful embryo-biopsy pregnancy and birth in the U.S., the first clinical trial of gene therapy for Parkinson's disease, and most recently, the world's first successful use of deep brain stimulation to treat a minimally conscious brain-injured patient. Weill Cornell Medical College is affiliated with NewYork-Presbyterian Hospital, where its faculty provides comprehensive patient care at NewYork-Presbyterian Hospital/Weill Cornell Medical Center. The Medical College is also affiliated with the Methodist Hospital in Houston. For more information, visit weill.cornell.edu.
[ | E-mail | Share ]
?
AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.
[ | E-mail | Share ]
Contact: Lauren Woods
Law2014@med.cornell.edu
646-317-7401
New York- Presbyterian Hospital/Weill Cornell Medical Center/Weill Cornell Medical College
Researchers 1 step closer to discovering combination drug therapy for lymphoma and avoiding toxicity of chemotherapy
NEW YORK (Dec. 10, 2012) -- Diffuse large B-cell lymphoma (DLBCL) is the most common subtype of non-Hodgkin's lymphoma and the seventh most frequently diagnosed cancer. The most chemotherapy resistant form of DLBCL, called activated B-cell DLBCL (ABC-DLBCL), remains a major therapeutic challenge. An international research team, led by two laboratories from Weill Cornell Medical College, has developed a new experimental drug therapy to target this aggressive form of lymphoma.
In the journal Cancer Cell, researchers report the discovery of an experimental small molecule agent, MI-2, that irreversibly inactivates MALT1 -- a key protein responsible for driving the growth and survival of ABC-DLBCL cells.
"In our study we show the drug MI-2 we developed inactivates any MALT1 protein it touches, and without any apparent toxicity in animal models," says the study's lead investigator, Dr. Ari Melnick, associate professor of medicine and director of the Raymond and Beverly Sackler Center for Biomedical and Physical Sciences at Weill Cornell Medical College.
The research team, which includes investigators from Spain, Canada and several other U.S. institutions, are now working to optimize the drug while testing MI-2 with other drug therapies that could be less toxic than current chemotherapy regimens.
"No single drug can cure lymphoma. This is why we need to combine agents that can strike-out the different cellular pathways that lymphoma cells use to survive," says Dr. Melnick, who is also a hematologist-oncologist at NewYork-Presbyterian Hospital/Weill Cornell Medical Center. "We want to eliminate the use of toxic chemotherapy in the treatment of lymphoma patients, and these new study findings take us one-step closer to our goal of creating effective combinational molecular targeted therapy regimens to reduce treatment toxicity and improve lymphoma patient outcomes."
"A Bona Fide Therapeutic Target"
MALT1 is highly active in ABC-DLBCL and plays an important role in lymphoma cancer cell growth and survival. The unique protein is the only paracaspase produced in humans --and is a particular type of protease protein that cuts apart other proteins. But when MALT1 slices proteins in ABC-DLBCLs, it activates growth-promoting molecules and stops the work of other proteins that inhibit that growth.
"In essence, MALT1 turns off the brakes and presses the gas pedal to accelerate cell growth and survival in this aggressive cancer," Dr. Melnick says.
In this study, the researchers developed an activated form of MALT1 in the test tube that allowed them to study the structure of the molecule, and search for small molecule agents to shut it down. The key insights enabling this technical feat were achieved by co-lead investigator Dr. Hao Wu, an expert in biochemistry and structural biology and a former faculty member at Weill Cornell who is now at Harvard Medical School.
The researchers screened libraries of chemicals until they found one that tightly bonded to MALT1, preventing it from cutting other proteins. The agent, MI-2, also inactivated MALT1 in human samples of ABC-DLBCL, according to researchers.
When they tested the agent in mice, the research team found it stopped cancer growth without toxicity in normal tissues -- a trait Dr. Melnick says is due to the fact that MALT1 is not required for biological processes essential for life.
If tested successfully in human clinical trials, MI-2 could have benefits for other diseases, including MALT1 lymphoma, a lower-grade type of lymphoma. It could also possibly play a role in a variety of inflammatory and autoimmune disorders.
"MALT1 is a bona fide therapeutic target, and with the discovery of MI-2 we have provided a lead compound that forms the basis of a new class of therapeutic agents," says Dr. Melnick.
The Cornell Center for Technology Enterprise and Commercialization, on behalf of Cornell University, has filed a patent application on this research work.
###
This study was funded by the Leukemia & Lymphoma Society, Burroughs Wellcome Foundation, the Chemotherapy Foundation and the Beverly and Raymond Sackler Center for Physical and Biomedical Sciences at Weill Cornell Medical College.
Other study co-authors include Dr. Lorena Fontan, Dr. Chenghua Yang, Dr. Venkataraman Kabaleeswaran, Monica Garcia, Dr. Leandro Cerchietti, Dr. Rita Shaknovich, Shao Ning Yan and Dr. Fang Fang from Weill Cornell Medical College; Dr. Elena Beltran and Dr. Jose Angel Martinez-Climent from the University of Navarra, Spain; Dr. Katherine Borden, Dr. Laurent Volpon and Dr. Michael J. Osborne from the University of Montreal, Canada; Dr. Randy D. Gascoyne from the British Columbia Cancer Agency, Canada; and Dr. J. Fraser Glickman from The Rockefeller University.
Weill Cornell Medical College
Weill Cornell Medical College, Cornell University's medical school located in New York City, is committed to excellence in research, teaching, patient care and the advancement of the art and science of medicine, locally, nationally and globally. Physicians and scientists of Weill Cornell Medical College are engaged in cutting-edge research from bench to bedside, aimed at unlocking mysteries of the human body in health and sickness and toward developing new treatments and prevention strategies. In its commitment to global health and education, Weill Cornell has a strong presence in places such as Qatar, Tanzania, Haiti, Brazil, Austria and Turkey. Through the historic Weill Cornell Medical College in Qatar, the Medical College is the first in the U.S. to offer its M.D. degree overseas. Weill Cornell is the birthplace of many medical advances -- including the development of the Pap test for cervical cancer, the synthesis of penicillin, the first successful embryo-biopsy pregnancy and birth in the U.S., the first clinical trial of gene therapy for Parkinson's disease, and most recently, the world's first successful use of deep brain stimulation to treat a minimally conscious brain-injured patient. Weill Cornell Medical College is affiliated with NewYork-Presbyterian Hospital, where its faculty provides comprehensive patient care at NewYork-Presbyterian Hospital/Weill Cornell Medical Center. The Medical College is also affiliated with the Methodist Hospital in Houston. For more information, visit weill.cornell.edu.
[ | E-mail | Share ]
?
AAAS and EurekAlert! are not responsible for the accuracy of news releases posted to EurekAlert! by contributing institutions or for the use of any information through the EurekAlert! system.
Source: http://www.eurekalert.org/pub_releases/2012-12/nyph-ndt121012.php
obama sweet home chicago accenture match play george washington carver king cake mardi gras fun. hepatitis c symptoms
No comments:
Post a Comment